IOWA
 End-of-Course Assessment Programs

Released Items

$1 \quad$ Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & 1 \\ 0 & -1\end{array}\right]$. What is the
solution to the matrix equation $A X=B$?
A $X=\left[\begin{array}{ll}-4 & 3 \\ -2 & 1\end{array}\right]$
INCORRECT: The student found
$A^{-1}=\frac{1}{3-4}\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=-1\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}-3 & 2 \\ 2 & -1\end{array}\right]$,
then multiplied A^{-1} and B in the wrong order.

$$
X=B A^{-1}
$$

B $\quad X=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$
INCORRECT: The student found the wrong A^{-1} as $A^{-1}=1\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]$, then multiplied A^{-1} and B in the wrong order.

$$
X=B A^{-1}
$$

C $X=\left[\begin{array}{rr}-6 & -5 \\ 4 & 3\end{array}\right]$
CORRECT: The student found
$A^{-1}=\frac{1}{3-4}\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=-1\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}-3 & 2 \\ 2 & -1\end{array}\right]$,
then multiplied A^{-1} and B in the correct order.

$$
X=A^{-1} B
$$

D $\quad X=\left[\begin{array}{rr}6 & 5 \\ -4 & -3\end{array}\right]$
INCORRECT: The student found the wrong
A^{-1} as $A^{-1}=1\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]=\left[\begin{array}{rr}3 & -2 \\ -2 & 1\end{array}\right]$,
then multiplied A^{-1} by B.

$$
X=A^{-1} B
$$

CCSS Conceptual Category:

Algebra

CCSS Domain:

Reasoning with Equations and Inequalities

2 If matrix A has dimensions of 4×6 and matrix B has dimensions of 6×2, what are the dimensions of matrix $A B$?

A 2×4
INCORRECT: The student thought the dimensions of $A B$ were the number of columns of B by the number of rows of A.

B 4×2
CORRECT: The student identified the dimensions of $A B$ as the number of rows in A by the number of columns in B.

C 6×6
INCORRECT: The student thought the result should be a square matrix with the common dimensions of A and B.

D 24×12
INCORRECT: The student thought the dimensions were the products of the row and the columns: $(4)(6) \times(6)(2)$.

CCSS Conceptual Category:
Algebra
CCSS Domain:
Reasoning with Equations and Inequalities

3 A volleyball tournament was played over a two-day period. Ticket prices were $\$ 6$ for adults and $\$ 4$ for students. Matrix \boldsymbol{T} shows the numbers of tickets sold for the tournament and matrix C shows the ticket prices in dollars.
$\left.\begin{array}{r}\text { Adult } \\ \left.T=\begin{array}{c}\text { Student }\end{array} \quad \begin{array}{c}\text { Price } \\ \text { Day } 1 \\ \text { Day } 2\end{array}\left[\begin{array}{ll}200 & 325 \\ 250 & 400\end{array}\right], \quad C=\begin{array}{c}\text { Adult }\end{array}\right] \\ \text { Student }\end{array}\right]$

Which matrix operation gives the total revenue, in dollars, from ticket sales for each day of the tournament?

A $C \times T$
INCORRECT: The student did not take into account the dimensions of each matrix when determining the order of the product.

B $T \times C$
CORRECT: The student multiplied the number of tickets sold (2×2 matrix) by the ticket price (2×1 matrix).

C $2 T \times C$
INCORRECT: The student tried to account for the 2 -day event by multiplying by 2 .

D $2(C \times T)$
INCORRECT: The student used the product (ticket price) \times (number of tickets sold), and then tried to account for the 2-day event by multiplying that product by 2 .

CCSS Conceptual Category:

Algebra

CCSS Domain:

Creating Equations

4 What should $\left[\begin{array}{l}7 \\ 4\end{array}\right]$ be multiplied by to solve the matrix equation below?

$$
\left[\begin{array}{rr}
2 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
7 \\
4
\end{array}\right]
$$

A $\quad \frac{1}{4}\left[\begin{array}{rr}3 & 1 \\ -2 & 2\end{array}\right]$
INCORRECT: The student found the determinant by adding, not subtracting,
$\left(\frac{1}{(2)(3)+(-2)(1)}\right)$ and interchanged the non-leading diagonal elements.

B $\frac{1}{4}\left[\begin{array}{rr}3 & 2 \\ -1 & 2\end{array}\right]$
INCORRECT: The student found the determinant by adding, not subtracting,
$\left(\frac{1}{(2)(3)+(-2)(1)}\right)$.
C $\frac{1}{8}\left[\begin{array}{rr}3 & 1 \\ -2 & 2\end{array}\right]$
INCORRECT: The student interchanged the non-leading diagonal elements.

D $\frac{1}{8}\left[\begin{array}{rr}3 & 2 \\ -1 & 2\end{array}\right]$
CORRECT: The student found the
determinant $\left(\frac{1}{(2)(3)-(-2)(1)}\right)$, interchanged the leading diagonal elements, and changed the signs of the non-leading diagonals.

CCSS Conceptual Category:
Algebra
CCSS Domain:
Reasoning with Equations and Inequalities

5 What should $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ be multiplied by to obtain the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$?

A $\left[\begin{array}{ll}0.5 & 0 \\ 0 & 1\end{array}\right]$
INCORRECT: The student found the inverse of the matrix.

B $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
CORRECT: The student used the identity matrix.

C $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
INCORRECT: The student placed the 1's on the wrong diagonal.

D $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
INCORRECT: The student thought the identity matrix has all elements of 1 .

CCSS Conceptual Category:

Algebra
CCSS Domain:
Arithmetic with Polynomials and Rational
Expressions

